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Abstract 

Rotating machines are commonly used in industrial applications. Mechanical faults such as 
rotor unbalance, shaft misalignment, pulley misalignment, structural looseness, and bearing 

faults leading to unplanned shutdown based on the severity of these faults. The condition 
monitoring technique based on vibration analysis has the potential to detect and diagnose a 
great number of early stage faults. However, some mechanical faults have correlated 

vibration features leading to ambiguous diagnosis to identify and distinguish these faults. In 
this paper, a proposed method based on the Principal Component Analysis (PCA) is 

presented to produce uncorrelated Principal Components (PCs) to identify the healthy and 
different faulty cases. A test rig was prepared to simulate a group of mechanical faults such 
as rotor unbalance, pulley misalignment, belt damage, combined unbalance with pulley 

misalignment, and combined unbalance with belt damage. The conventional vibration 
measurements were collected for each case and their features were extracted and used to 

produce the equivalent PCs. It was found that the produced uncorrelated PCs have the 
superior to distinguish the majority of simulated faults which have correlated vibration 
features as presented in the rest of paper.  

Keywords: Condition Monitoring, Vibration Signatures, Fault Diagnosis, Rotating 

Machine, Principal Component Analysis
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1. Introduction 

Rotary machines in general configuration consist of three main parts; rolling or 

journal bearings (anti-friction or fluid bearings), rotor, and foundation. Since rotary 
machines commonly work in a tough operating environment, this makes it more expose to 

different types of faults and increases the difficulty of fault diagnosis. The failure in rotating 
machines leads to productivity loss, economic, safety, and environmental issues [1]-[4]. 
Early fault detection is necessary to keep the cost in industry by keeping machine life time 

and spare parts. Therefore, the advanced maintenance systems move to another form of 
maintenance handling called predictive maintenance. Predictive maintenance based 

condition monitoring is employed to improve the productivity rate, production quality, and 
the efficiency of manufacturing plants. The main concept of predictive maintenance is to 
achieve early detection of potential failures. In the case of machines driven by induction 

motor, the predictive maintenance is performed to detect the initial failures due to rotor 
unbalance, bearing defects, and shaft misalignment. Also, it is employed to detect faults in 

the induction motors such as stator windings shortage, broken rotor bar(s), and air gap 
eccentricity. The core benefit of the early fault detection is to prevent the sudden failure due 
to heat generation from faults and decrease the consumed energy. 

More efforts were presented to detect and monitor the different faults initiated in 
rotary machines based on different condition monitoring methods. Independence-oriented 

variational mode decomposition method was proposed via correlation analysis to adaptively 
get the weak and compound fault feature of wheelset bearing[5]. Stochastic resonance was 
initially investigated in a multi-stable system by computing its output spectral amplification, 

analyzed its output frequency response numerically, and examined the effect of both 
rescaling and damping factors on output responses. Finally, a method was presented based 
on damped stochastic resonance with stable-state matching to initiate bearing fault 

diagnosis [6]. Multi-speed fault diagnostic approach was presented based on self-adaptive 
wavelet transform components produced from bearing vibration signals [7]. The presented 

approach can distinguish between signatures of four conditions of roller bearing, i.e., 
healthy bearing and three different types of defected bearings on the inner race, outer race, 
and roller separately. A bearing fault diagnosis technique was developed to increase the 

diagnosis accuracy [8]. Five features were selected as predictors in multi-class Support 
Vector Machine (SVM) classification. The five selected features are entropy estimation 

error, mean, Root Mean Squared (RMS), kurtosis, and histogram lower bound. Multi-fault 
diagnosis scheme for bearings was presented using hybrid features resulting from their 
acoustic emissions and a standard multi-class extension of the binary SVM [9]. Complete 

Ensemble Empirical Mode Decomposition (EEMD) was used with adaptive noise to detect 
rolling element bearings' faults [10]. The effect of sparse auto-encoder on the ordering 

performance of significantly compressed measurements of bearing vibration signals was 
displayed computationally [11]. Principal Component Analysis (PCA) was applied to the 
features extracted from vibration and current signatures and the artificial neural network and 

genetic algorithms were employed to classify induction motor faults [12]. It was observed 
that the performance of fault classification was improved after adding PCA. A method of 

bearing faults diagnosis was presented based on linear discriminant analysis, neighborhood 
component analysis, and PCA which achieved good results in dimensionality 
reduction [13]. PCA, linear discriminant analysis, fisher score, and a genetic algorithm were 

also applied to estimate an optimized and reduced features from vibration dataset [14]. An 
experiment was set up to compare health conditions of a motor and determine if their 



 

M53 

 

patterns could be grouped using PCA [15]. The result demonstrated that the proposed 

method successfully identified healthy, unbalance and parallel misalignments of rotary 
rotor. Three identical induced draft fans were monitored together using an unsupervised 

statistical algorithm based on PCA [16]. It was observed that the PCA based technique is a 
good fit for early fault detection compared to the conventional methods. PCA and empirical 
mode decomposition method were used to monitor the running states of rolling 

bearings [17]. The experiment results showed that the whole life cycle of the rolling 
bearings can be classified into five different operating periods and each period represents a 

different bearing operating state.   

The conventional vibration methods faced an issue when analyzing vibration signals 
since the features which distinguish healthy and different faulty cases are highly correlated 

which ultimately can bias the results of the algorithm leading to an ambiguous diagnosis. In 
this research, an improvement method based on PCA is presented to identify and distinguish 

different cases since PCA decreases the dimensionality and correlation of these 
features [18], [19]. Conventional vibration signals were collected and their features were 
extracted. After that, these features were employed as input parameters to the PCA model. 

The paper was arranged to define the vibration features and the mathematical model of PCA 
in section (2). Section (3) describes the rotary machine test rig and definitions for applied 

mechanical faults. Instrumentation and software are discussed in section 4. Experimental 
results and analysis are presented in section (5). Finally, section (6) discusses the research 
conclusions. 

2. Analysis Methods  
This section presents the concept and mathematical theory of method which 

has been applied to identify the different mechanical faults as mentioned above. It 

was classified into two subsections. The first one discusses the features of vibration 

pattern for different faults and the second one displays how to employ these features 

to identify the different faults through the PCA.  

2.1 Vibration Signatures  

The vibration analysis of rotary machine is based on detecting mechanical faults 

which are associated with the operation and mounting of the machine. Almost of 
mechanical faults are detected in the low frequency range (0~5X), where X is the machine 
rotating frequency. For example, rotor unbalance and bent shaft can increase the amplitude 

at X, shaft misalignment increases the amplitude at X and 2X, external and internal 
looseness increase the amplitude at X, 2X, …, nX, where n is the harmonic number. 

Monitoring these components based on the signature of vibration analysis has a considered 
contribution in detecting these types of faults. In this research the amplitude of the 
components 1X, 2X, 3X were recorded for different fault cases. In addition, RMS of time 

signal was estimated.     

2.2 Principal Component Analysis  

One of the most common problems in the analysis of various data observations is the 
highly correlated features. The main idea of PCA is to decrease the dimensionality of a data 

set in which there are a large number of related variables, while retaining as much as 
possible of the variation present in the data set. This reduction is achieved by transforming 
to a new set of variables, the Principal Components (PCs), which are uncorrelated and 

ordered so that the first few retain most of the variation present in all of the original 
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variables. Computation of the PCs reduces to the solution of an eigenvalue problem for a 
positive semi-definite symmetric matrix. Thus, the definition and computation of PCs are 
straightforward, but this simple technique has a wide variety of different applications, as 

well as a number of different derivations [20]. There are two popular algorithms for 
applying PCA; Singular Value Decomposition (SVD) and Eigenvalue Decomposition 

(EVD). In this research, SVD was applied since it is more robust when matrices are 
numerically singular or very near to singular [21]. 

If a data has "n" observations and "m" features, a matrix, X, of       dimensions 

is generated and the SVD can be defined as:  

                                                                            

where U is an     ) orthogonal matrix, S is a       diagonal matrix that contains the 
variations of principal components (PCs) and are arranged in the diagonal according to the 

rank, r, and V is an       orthogonal matrix contains PCs which denoted as loadings. The 
importance of the SVD for PCA is twofold. Firstly, it provides a computationally efficient 

method of actually finding PCs. It is clear that if U, S, V satisfying Eq. (1), then V and S 
will give the eigenvectors and the square roots of the eigenvalues of XTX, and hence the 

coefficients and standard deviations of the PCs. To see scaled versions of PC scores in U, 
multiply eq. (1) by V to give: 

               , and                                           (2) 

where XV is a (n × r) matrix whose kth column (K=1,2…,m) consists of thePC scores for
the kth PC;    is an (r × r) identity matrix. A second virtue of the SVD is that it provides 

additional insight into what a PCA actually does, and it gives useful means, both graphical 
and algebraic, of representing the results of a PCA. Furthermore, the SVD is useful in terms 

of both computation and interpretation in PC regression and in examining the links between 
PCA and correspondence analysis. 

3. Experimental setup 

Due to operating conditions and the nature of process fluids passing through 

mechanical components (e.g. impellers, fans, screws) of rotating machines (e.g. pumps, 
cooling towers, compressors), faults like rotor unbalance due to wear, belt damage due to 

tension, and pulleys misalignment due to looseness may be initiated. The main objective of 
the test rig used in this research is to simulate common faults in rotary machines installed in 
many industries. It was constructed from two shafts supported on four bearings of UCP206 

bearing type as shown in Figure 1. The power is transmitted to the second shaft through 
pulleys and belt and each shaft carries one disc. A three phase servo motor of APM-

SE09MEK model type with a permanent connected short shaft was used as a power source 
and its speed was controlled by a servo drive of L7SA020A model type. Both of the motor 
and drive were produced by LS Group (South Korean Corporation). The motor shaft was 

connected to a flexible coupling that assembled the motor shaft and the first shaft in the test 
rig. 
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Figure 1: Test rig.  

Measurements were recorded at steady-state condition and datasets of 78 cases were 
collected for healthy and different fault cases. The faults applied to the test rig are static 

unbalance, dynamic unbalance, pulley misalignment, belt damage, and combined faults as 
arranged in Table 1. The static unbalance was modeled as one weighted mass installed in 
the rotors of two shafts. The dynamic unbalance was modeled as two weighted masses the 

angle between was slightly loosened to simulate the belt damage faults. Combined faults 
cases were simulated by testing the rig with two faults at the same time (unbalance with 

pulley misalignment and unbalance with belt damage). Each fault case was tested at 1000 
rpm (16.67 Hz), 1500 rpm (25 Hz), and 2000 rpm (33.33 Hz) to study the ability of 
distinguishing different faults in variable speed machines.  

Table 1: Description for different fault cases. 

Symbol Description  

C0 Healthy condition  

C1 Static unbalance on one shaft 

C2 Static unbalance on two shafts 

C3 Dynamic unbalance  

C4 Pulley misalignment  

C5 Combined unbalance and pulley misalignment  

C6 Belt damage 

C7 Combined unbalance and belt damage  

4. Instrumentation 

A data acquisition system was used to record the data measured by sensors which 
converted from analog to digital form at a certain sampling rate. B&K PULSE input module 
type 3050-A-060 has been used as a data acquisition system in this analysis. It includes six 

high-precision input channels with an input range from DC to 51.2 kHz. A standard LAN 
cable was used for synchronous sampling between the module and system power. The 

module allows front panels to be interchanged freely, with a variety of connectors for 
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different transducers and applications. Electronic data sheet (TEDS) transducers were 
connected to the module which allowing automatic front-end and analyzer setup based on 
TEDS information stored in the transducer such as family, serial number, sensitivity, and 

manufacturer. Two TEDS transducers were connected to the first two channels of the 
module and each transducer was connected to the module by a Bayonet Neill–Concelman 

(BNC) cable of radio frequency coaxial connector. The two transducers were used to record 
the vibration measurements in the vertical and horizontal directions at the same time on the 
same bearing.  

Pulse Labshop software was setup and vibration signals were collected through a 
frequency range from 0 to 400 Hz and time wave forms were sampled to 4096 samples to 

record 4sec (1024 samples/s) and to satisfy Nyquist–Shannon sampling theorem. FFT 
spectra have 1600 lines of resolution yielding a frequency resolution of 0.25 Hz. On the 
other hand, the servo motor of APM-SE09MEK model type was connected to APD-L7S 

servo drive as shown in Figure 2 for complete control on input and output parameters of 
motor.  

 
Figure 2: Configuration of data collection system. 

5. Results  

5.1 Vibration dataset 
FFT was computed for vibration signals and the RMS at bearing No. 1 and 2 

(bearings which support the shaft coupled with motor) in the horizontal (Ht) and vertical 

(Vt) direction was estimated. The vibration analysis was performed on the frequency 
spectrum and time wave form as displayed in the example shown in Figure 3. This figure 

presents the effect of unbalance fault on the vibration pattern and level since the unbalance 
increased the amplitudes at 2X which considered the dominant to increase the RMS of time 
signal. The effects of different faults on changing the values of 1X, 2X, 3X, and RMS levels 

are shown in Figure 4 to Figure 7. The features values of these figures are arranged in Table 
2. The correlated features were estimated using the following formula: 

                    
     

  
                                       (3) 

where Ncorr is the number of correlated features in one case. It was observed that the highly 
correlated features have been investigated by static unbalance on one shaft (C1) and belt 
damage case (C6) followed by healthy (C0), dynamic unbalance (C3), pulley misalignment 

(C4), and combined faults (C7 and C5). The numbers of correlated features have a ratio of 
62.5, 62.5, 56.25, 43.75, 37.5, 37.5, and 25% of total features, respectively. On the other 

hand, all the features of static unbalance on two shafts case (C2) are uncorrelated. However 
there is an observed change in the levels of the selected vibration features, it is not adequate 
for the diagnosis of some simulated faults without other aided tools [22], [23]. In the next 
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section, one of the aided tools (PCA) is employed to identify and distinguish the faults 

which have correlated vibration features since PCA retrieves as much as possible the 
variations in these features in the form of uncorrelated PCs. 

 
Figure 3: Vibration measurements for healthy and unbalance cases -1500rpm (25Hz) -

Bearing No. (1)-vertical direction. 

 
Figure 4: Variation of 1X for radial directions of two bearings. 
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Figure 5: Variation of 2X for radial directions of two bearings. 

 
Figure 6: Variation of 3X for radial directions of two bearings. 
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Figure 7: Variation of RMS for radial directions of two bearing. 

Table 2: Vibration features for healthy and different faulty cases.  

Features C0 C1 C2 C3 C4 C5 C6 C7 

1X-1Vt (mm/s) 0.21 0.43 0.17 0.34 0.36 0.07 0.06 0.48 

1X-1Ht (mm/s) 0.47 0.10 0.31 0.27 0.35 0.81 0.10 0.07 

1X-2Vt (mm/s) 0.10 0.12 1.01 0.15 0.05 0.35 0.11 0.15 

1X-2Ht (mm/s) 0.03 0.38 0.93 0.51 0.11 0.26 0.12 0.41 

2X-1Vt (mm/s) 0.70 0.45 5.63 0.74 0.94 4.04 0.46 4.47 

2X-1Ht (mm/s) 0.55 0.03 2.85 0.26 0.22 0.96 0.10 1.92 

2X-2Vt (mm/s) 0.63 0.43 7.45 0.81 1.15 5.33 0.47 5.90 

2X-2Ht (mm/s) 0.40 0.15 3.07 0.07 0.65 2.40 0.26 2.59 

3X-1Vt (mm/s) 0.18 0.14 0.22 0.08 0.09 0.11 0.02 0.15 

3X-1Ht (mm/s) 0.15 0.06 0.37 0.10 0.03 0.23 0.05 0.11 

3X-2Vt (mm/s) 0.17 0.13 0.51 0.03 0.17 0.09 0.19 0.20 

3X-2Ht (mm/s) 0.05 0.03 0.18 0.01 0.05 0.07 0.07 0.09 

RMS-1Vt (mm/s) 2.51 2.40 9.78 4.19 3.58 7.95 1.84 7.64 

RMS-1Ht (mm/s) 1.86 1.94 5.71 2.87 2.37 6.38 1.77 4.18 

RMS-2Vt (mm/s) 3.96 3.49 12.92 4.76 4.06 9.96 2.65 10.17 

RMS-2Ht (mm/s) 1.93 3.44 8.08 3.18 2.33 5.98 1.79 5.05 

Correlated  

Features (%) 
56.25 62.5 0 43.75 37.5 25 62.5 37.5 

 

 1
st

 Correlated features 

in one row  

2
nd

 Correlated features 

in one row  

3
rd

 Correlated features 

in one row 
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5.2 Principal Component Analysis  
PCA was applied to extract the PCs of healthy and different fault cases. The four 

features in each direction of two bearings were arranged in a matrix of (78   16) which 
represents 78 observations and 16 features in each observation (4 features for each 

direction   2 bearings   2 directions). The variation of PCs is the main parameter that 
describes which PC included the most features since the greater the variation of PCs the 

more features extracted. The variation of PCs is displayed in Figure 8. Since the first and 
second PCs have the largest variation compared to other PCs, they only were considered in 

this analysis. The features of PC1 and PC2 are shown in Figure 9 and arranged in Table 3. It 
was found that all correlated vibration features are converted into uncorrelated PCs for all 
cases except the correlated PC1 between healthy (C0) and static unbalance on one shaft 

(C1). These uncorrelated PCs aid to solve the issue of good identification for different 
cases.  

 
Figure 8: PCs variation. 

 
Figure 9: PC1 and PC2 for healthy and different fault cases. 

Table 3: PC1 and PC2 for healthy and different faulty cases. 
 C0 C1 C2 C3 C4 C5 C6 C7 

PC1 -5.45 -5.46 -21.38 -7.51 -6.50 -16.88 -4.04 -16.22 

PC2 0.16 0.87 -4.98 0.87 0.01 -2.72 0.35 -4.11 
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6. Conclusions 
Condition monitoring based on vibration signatures and PCA has been presented in 

this paper. PCA was applied to reduce the dimensionality and correlated features and 
improve the accuracy of fault diagnosis process. Vibration signals were measured for 
healthy and different faulty cases such as unbalance, pulley misalignment, belt damage, and 

combined faults. After that, the features of these signals were extracted. It was found that 
the highly correlated features have been investigated by static unbalance on one shaft (C1) 

and belt damage case (C6) followed by healthy (C0), dynamic unbalance (C3), pulley 
misalignment (C4), and combined faults (C7 and C5). The numbers of correlated features 
have a ratio of 62.5, 62.5, 56.25, 43.75, 37.5, 37.5, and 25% of total features, respectively. 

On the other hand, all the features of static unbalance on two shafts case (C2) are 
uncorrelated. To improve the issue of correlated features, PCA method was implemented 

using vibration features as input parameters to the PCA model. It was concluded that all 
correlated vibration features are converted into uncorrelated PCs for all cases except the 
correlated PC1 between healthy (C0) and static unbalance on one shaft (C1). This means 

that PCA has the superior to identify and distinguish different cases which have an 
ambiguous diagnosis when using conventional vibration measurements.  

References 
[1] N. Verma, T. Subramanian, Cost benefit analysis of intelligent condition based 
maintenance of rotating machinery, 7th IEEE Conference on Industrial Electronics and 

Applications (ICIEA) (2012), pp. 1390-1394. 
[2] Z. Zhang, Data mining approaches for intelligent condition-based maintenance, a 

framework of intelligent fault diagnosis and prognosis System (IFDPS) (2014). 
[3] S. Shao, W. Sun, P. Wang, R. Gao, R. Yan, Learning features from vibration signals for 
induction motor fault diagnosis, International Symposium on Flexible Automation 

(ISFA) IEEE (2016), pp. 71-76. 
[4] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D. Inman, Real-time vibration-based 

structural damage detection using one-dimensional convolutional neural networks, Journal 
of Sound and Vibration (2017), vol. 388, pp. 154-170. 
[5] Z. Li, J. Chen,Y. Zi, J. Pan, Independence-oriented VMD to identify fault feature for 

wheel set bearing fault diagnosis of high speed locomotive, Mechanical Systems and Signal 
Processing (2017), vol. 85, pp. 512-529. 

[6] Y. Lei, Z. Qiao, X. Xu, J. Lin, S. Niu, An underdamped stochastic resonance method 
with stable-state matching for incipient fault diagnosis of rolling element 
bearings, Mechanical Systems and Signal Processing (2017), vol. 94, pp. 148-164. 

[7] Z. Huo, Y. Zhang, P. Francq, L. Shu, J. Huang, Incipient fault diagnosis of roller 
bearing using optimized wavelet transform based multi-speed vibration signatures, IEEE 

Access (2017). 
[8] D. Susilo, A. Widodo,T. Prahasto, M. Nizam, Fault diagnosis of roller bearing using 
parameter evaluation technique and multi-class support vector machine, AIP Conference 

Proceedings (2017), vol. 1788, no. 1, p. 030081. 
[9] M. Islam, J. Kim, S. Khan, J. Kim, Reliable bearing fault diagnosis using Bayesian 

inference-based multi-class support vector machines, The Journal of the Acoustical Society 
of America (2017), vol. 141(2), pp. 89-95. 
[10] Y. Lei, Z. Liu, J. Ouazri, J. Lin, A fault diagnosis method of rolling element 

bearings based on CEEMDAN, Journal of Mechanical Engineering Science (2017), vol. 
231(10), pp. 1804-1815. 



M62 

 

[11] H. Ahmed, M. Wong, A. Nandi, Intelligent condition monitoring method for bearing 
faults from highly compressed measurements using sparse over-complete 
features, Mechanical Systems and Signal Processing (2018), vol. 99, pp. 459-477. 

[12] B. Yang, T. Han, Z. Yin, Fault diagnosis system of induction motors using feature 
extraction, feature selection and classification algorithm, JSME International Journal Series 

C Mechanical Systems, Machine Elements and Manufacturing (2006), vol. 49(3), pp. 734-
741 
[13]  M. Farajzadeh, R. Razavi, M. Saif, Dimensionality reduction-based diagnosis of 

bearing defects in induction motors, IEEE International Conference on Systems, Man, and 
Cybernetics (SMC) (2017), pp. 2539–2544.  

[14] J. Saucedo, M. Delgado, R. Osornio, R. De Jesus, Multifault diagnosis method 
applied to an electric machine based on high-dimensional feature reduction, IEEE 
Transactions on industry applications (2017), vol. 53(3), pp. 3086-3097. 

[15] T. Plante, L. Stanley, A. Nejadpak, C. Yang, Rotating machine fault detection using 
principal component analysis of vibration signal, IEEE autotestcon (2016),pp. 1-7. 

[16] K. Sarita, R. Devarapalli, S. Kumar, H. Malik, F. Márquez, P. Rai, Principal 
component analysis technique for early fault detection, Journal of Intelligent & Fuzzy 
Systems (2021), PP. 1-12. 

[17] Y. Yuan, C. Chen, Fault detection of rolling bearing based on principal component 
analysis and empirical mode decomposition, AIMS Mathematics (2020), vol. 5(6), pp. 

5916-5938. 
[18] R. Teti, K. Jemielniak, G. Donnell, D. Dornfeld, Advanced monitoring of machining 
operations, CIRP annals (2010), vol. 59(2), pp. 717-739  

[19] T. Sutharssan, S. Stoyanov, C. Bailey, C. Yin, Prognostic and health management 
for engineering systems: a review of the data-driven approach and algorithms, The Journal 

of engineering (2015), vol. 7, pp. 215-222 
[20] I. Jolliffe, Principal component analysis, Springer (2010). 
[21] A. Stief, J. Ottewill, J. Baranowski, M. Orkisz, A PCA-two stage Bayesian sensor 

fusion approach for diagnosing electrical and mechanical faults in induction motors, IEEE 
Transactions on Industrial Electronics (2019). 

[22] J. Sinou, Experimental response and vibrational characteristics of a slotted rotor, 
Communications in Nonlinear Science and Numerical Simulation (2009), vol. 14(7), pp. 
3179-3194. 

[23] J. Sinha, Health monitoring techniques for rotating machinery, PhD University of 
Wales Swansea (2002). 

 
 

View publication stats

https://www.researchgate.net/publication/354689737

